Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202403508, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647357

RESUMO

MXenes have extensive applications due to their different properties determined by intrinsic structures and various functional groups. Exploring different functional groups of MXenes leads to improved performance or potential applications. In this work, we prepared new Ti3C2PBrx (x=0.4-0.6) MXene with phosphorus functional groups (-P) through a two-step gas-phase reaction. The acquisition of -P is achieved by replacing bromine functional groups (-Br) of Ti3C2Br2 in the phosphorus vapor. After -Br is replaced with -P, Ti3C2PBrx MXene shows an improved areal capacitance (360 mF cm-2) at 20 mV s-1 compared with Ti3C2Br2 MXene (102 mF cm-2). At a current density of 5 mA cm-2 after 10000 cycles, the capacitance retention of Ti3C2PBrx MXene has not decreased. The pseudocapacitive enhancement mechanism has been discovered based on the dual redox sites of the functional groups -P and Ti.

2.
Nano Lett ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652819

RESUMO

It is technically challenging to quantitatively apply strains to tune catalysis because most heterogeneous catalysts are nanoparticles, and lattice strains can only be applied indirectly via core-shell structures or crystal defects. Herein, we report quantitative relations between macroscopic strains and hydrogen evolution reaction (HER) activities of dealloyed nanoporous gold (NPG) by directly applying macroscopic strains upon bulk NPG. It was found that macroscopic compressive strains lead to a decrease, while macroscopic tensile strains improve the HER activity of NPG, which is in line with the d-band center model. The overpotential and onset potential of HER display approximately a linear relation with applied macroscopic strains, revealing an ∼2.9 meV decrease of the binding energy per 0.1% lattice strains from compressive to tensile. The methodology with the high strain sensitivity of electrocatalysis, developed in this study, paves a new way to investigate the insights of strain-dependent electrocatalysis with high precision.

3.
Bioact Mater ; 34: 466-481, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38292412

RESUMO

Cancer patients by immune checkpoint therapy have achieved long-term remission, with no recurrence of clinical symptoms of cancer for many years. Nevertheless, more than half of cancer patients are not responsive to this therapy due to immune exhaustion. Here, we report a novel gene engineered exosome which is rationally designed by engineering PD1 gene and simultaneously enveloping an immune adjuvant imiquimod (PD1-Imi Exo) for boosting response of cancer immune checkpoint blockage therapy. The results showed that PD1-Imi Exo had a vesicular round shape (approximately 139 nm), revealed a significant targeting and a strong binding effect with both cancer cell and dendritic cell, and demonstrated a remarkable therapeutic efficacy in the melanoma-bearing mice and in the breast cancer-bearing mice. The mechanism was associated with two facts that PD1-Imi Exo blocked the binding of CD8+ T cell with cancer cell, displaying a PD1/PDL1 immune checkpoint blockage effect, and that imiquimod released from PD1-Imi Exo promoted the maturation of immature dendritic cell, exhibiting a reversing effect on the immune exhaustion through activating and restoring function of CD8+ T cell. In conclusion, the gene engineered exosome could be used for reversing T cell exhaustion in cancer immunotherapy. This study also offers a promising new strategy for enhancing PD1/PDL1 therapeutic efficacy, preventing tumor recurrence or metastasis after surgery by rebuilding the patients' immunity, thus consolidating the overall prognosis.

4.
J Colloid Interface Sci ; 656: 262-269, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37995396

RESUMO

The exploration of efficient and stable noble-metal-free electrocatalysts for hydrogen evolution reaction (HER) is of great interest for the development of electrochemical hydrogen production technologies. Herein, nanoporous Ni-based catalyst with Mo and B co-addition (NiMoB) prepared by dealloying is reported as an efficient electrocatalysts for HER. The nanoporous NiMoB achieves an overpotential of 31 mV at 10 mA cm-2, along with exceptional catalytic stability in alkaline electrolyte. Density functional theory (DFT) calculations reveal that the incorporation of Mo and B can synergistically optimize the electronic structure and regulate the adsorption of HER intermediates on the Ni active site, thus accelerating the HER kinetics. This study provides a new perspective for the development of non-precious Ni-based catalysts towards efficient hydrogen energy conversion.

5.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 37(8): 937-944, 2023 Aug 15.
Artigo em Chinês | MEDLINE | ID: mdl-37586792

RESUMO

Objective: To design and construct a graphene oxide (GO)/silver nitrate (Ag3PO4)/chitosan (CS) composite coating for rapidly killing bacteria and preventing postoperative infection in implant surgery. Methods: GO/Ag3PO4 composites were prepared by ion exchange method, and CS and GO/Ag3PO4 composites were deposited on medical titanium (Ti) sheets successively. The morphology, physical image, photothermal and photocatalytic ability, antibacterial ability, and adhesion to the matrix of the materials were characterized. Results: The GO/Ag3PO4 composites were successfully prepared by ion exchange method and the heterogeneous structure of GO/Ag3PO4 was proved by morphology phase test. The heterogeneous structure formed by Ag3PO4 and GO reduced the band gap from 1.79 eV to 1.39 eV which could be excited by 808 nm near-infrared light. The photothermal and photocatalytic experiments proved that the GO/Ag3PO4/CS coating had excellent photothermal and photodynamic properties. In vitro antibacterial experiments showed that the antibacterial rate of the GO/Ag3PO4/CS composite coating against Staphylococcus aureus reached 99.81% after 20 minutes irradiation with 808 nm near-infrared light. At the same time, the composite coating had excellent light stability, which could provide stable and sustained antibacterial effect. Conclusion: GO/Ag3PO4/CS coating can be excited by 808 nm near infrared light to produce reactive oxygen species, which has excellent antibacterial activity under light.


Assuntos
Quitosana , Nitrato de Prata , Titânio , Antibacterianos/farmacologia , Corantes
6.
Biomimetics (Basel) ; 8(2)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37366857

RESUMO

Currently, platelet-rich plasma (PRP) is an attractive additive for bone repair materials. PRP could enhance the osteoconductive and osteoinductive of bone cement, as well as modulate the degradation rate of calcium sulfate hemihydrate (CSH). The focus of this study was to investigate the effect of different PRP ratios (P1: 20 vol%, P2: 40 vol%, and P3: 60 vol%) on the chemical properties and biological activity of bone cement. The injectability and compressive strength of the experimental group were significantly higher than those of the control. On the other hand, the addition of PRP decreased the crystal size of CSH and prolonged the degradation time. More importantly, the cell proliferation of L929 and MC3T3-E1 cells was promoted. Furthermore, qRT-PCR, alizarin red staining, and western blot analyses showed that the expressions of osteocalcin (OCN) and Runt-related transcription factor 2 (Runx2) genes and ß-catenin protein were up-regulated, and mineralization of extracellular matrix was enhanced. Overall, this study provided insight into how to improve the biological activity of bone cement through PRP incorporation.

7.
J Colloid Interface Sci ; 645: 287-296, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37150002

RESUMO

The biomedical field has the potential to significantly benefit from the use of flexible free-standing Ag nanostructures due to their outstanding mechanical and antibacterial properties. However, the intricate process of synthesizing these nanostructures, as well as the potential toxicity of nanostructured Ag, pose significant challenges. This study used a facile etching method to synthesize the free-standing nanoporous Ag (NP-Ag) ribbons with a homogeneous and bicontinuous three-dimensional ligament structure. The free-standing NP-Ag ribbons demonstrated stable mechanical performance and excellent flexibility when subjected to various deformation states on artificial fingers. Additionally, the NP-Ag ribbons exhibited remarkable antibacterial capacity with rates of 99.81 ± 0.14% against Escherichia coli, 96.11 ± 1.49% against Staphylococcus aureus, and 95.37 ± 1.24% against methicillin-resistant Staphylococcus aureus. The antibacterial mechanism of NP-Ag is attributed to the rapid release of Ag ions (Ag+) in 24 h, causing damage to the bacterial membrane. Moreover, the in vivo results demonstrate that the NP-Ag ribbons provide rapid antibacterial efficacy and are biosafe due to the long-term stable Ag+ release of NP-Ag. The development of these free-standing flexible NP-Ag ribbons offers a new avenue for wearable antibacterial applications.


Assuntos
Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Nanoporos , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus , Escherichia coli , Nanopartículas Metálicas/química
8.
Small ; 19(23): e2207687, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36908091

RESUMO

Defect engineering is an important way to tune the catalytic properties of metal-organic framework (MOF), yet precise control of defects is difficult to achieve. Herein, a cerium-based MOF (CeTCPP) is decorated with Au nanoparticles. Under ultrasound irradiation, Au nanoparticles can precisely turn 1/3 of the pristine Ce3+ nodes into Ce4+ . With the stable existence of Ce4+ , the coordination of Ce nodes changed, causing the structural irregularity in CeTCPP-Au, so that the electron-hole recombination is obviously hindered, facilitating the generation of reactive oxygen species. Therefore, under 20 min of ultrasound irradiation, the CeTCPP-Au showed superior antibacterial efficacy of over 99% against Staphylococcus aureus and Escherichia coli with good biocompatibility, which is further used for effective therapy of osteomyelitis. Overall, this work provides a dynamic defect formation strategy of MOF through the electron trapping of Au nanoparticles, which also sheds light on sonodynamic therapy in curing deep-seated lesions.


Assuntos
Nanopartículas Metálicas , Estruturas Metalorgânicas , Osteomielite , Humanos , Estruturas Metalorgânicas/química , Ouro/química , Elétrons , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/química , Osteomielite/terapia
9.
Natl Sci Rev ; 10(2): nwac221, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36817841

RESUMO

While conventional bacterial pneumonia mainly centralizes avoidance of bacterial colonization, it remains unclear how to restore the host immunity for hyperactive immunocompetent primary and immunocompromised secondary bacterial pneumonia. Here, probiotic-based nanoparticles of OASCLR were formed by coating chitosan, hyaluronic acid and ononin on living Lactobacillus rhamnosus. OASCLR nanoparticles could effectively kill various clinic common pathogens and antibacterial efficiency was >99.97%. Importantly, OASCLR could modulate lung microbiota, increasing the overall richness and diversity of microbiota by decreasing pathogens and increasing probiotic and commensal bacteria. Additionally, OASCLR could target inflammatory macrophages by the interaction of OASCLR with the macrophage binding site of CD44 and alleviate overactive immune responses for hyperactive immunocompetent pneumonia. Surprisingly, OASCLR could break the state of the macrophage's poor phagocytic ability by upregulating the expression of the extracellular matrix assembly, immune activation and fibroblast activation in immunocompromised pneumonia. The macrophage's phagocytic ability was increased from 2.61% to 12.3%. Our work provides a potential strategy for hyperactive immunocompetent primary and immunocompromised secondary bacterial pneumonia.

10.
ACS Omega ; 8(6): 5893-5900, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36816697

RESUMO

The group "beyond Li-ion" batteries (Na/Mg-ion batteries) have the advantages of abundant reserves and high theoretical specific capacity. However, the sluggish kinetics resulting from large ion radius (Na+) and polarity (Mg2+) seriously limit the battery performance. Herein, we prepared Nb-doped anatase TiO2 with Ti vacancies (Nb-TiO2) through a simple solvothermal and subsequent calcination process. The Nb doping widens the channels for metal ion diffusion, and the cationic vacancies can act as ion storage sites and improve the electrode conductivity. Thus, Nb-TiO2 exhibits improved performance for rechargeable Na/Mg-ion batteries.

11.
J Colloid Interface Sci ; 638: 893-900, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36690570

RESUMO

Transition metal (TM) sulfides are promising catalysts for water splitting in alkaline media due to their high intrinsic activities and similar TM-S electronic structure with hydrogenase. In this work, the nanoporous FeCoNbS electrocatalyst with nanosheet morphology is synthesized through dealloying AlFeCoNb alloy followed by the steam sulphurization. The introduction of S element improves the electronic structure, further increases the active sites, regulates the mass transfer and enhances the intrinsic activity. The Nb introduction improves the electron transfer ability of the catalyst. The synergistic effect of Fe, Co and Nb improves the intrinsic activity of the active site. The FeCoNbS catalyst exhibits good catalytic performance for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline solution. The overpotentials at 10 mA cm-2 of HER and OER are 83 and 241 mV, respectively. The Tafel slopes of HER and OER are 101.2 and 35.5 mV dec-1, respectively. The FeCoNbS can serve as overall water splitting electrode with the decomposition voltage of 1.61 V at 10 mA cm-2.

12.
Angew Chem Int Ed Engl ; 62(13): e202300800, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36720713

RESUMO

It is challenging to design one non-noble material with balanced bifunctional performance for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) for commercial sustainability at a low cost since the different electrocatalytic mechanisms are not easily matchable for each other. Herein, a self-standing hybrid system Ni18 Fe12 Al70 , consisting of Ni2 Al3 and Ni3 Fe phases, was constructed by laser-assisted aluminum (Al) incorporation towards full water splitting. It was found that the incorporation of Al could effectively tune the morphologies, compositions and phases. The results indicate that Ni18 Fe12 Al70 delivers an extremely low overpotential to trigger both HER (η100 =188 mV) and OER (η100 =345 mV) processes and maintains a stable overpotential for 100 h, comparable to state-of-the-art electrocatalysts. The synergistic effect of Ni2 Al3 and Ni3 Fe alloys on the HER process is confirmed based on theoretical calculation.

13.
ACS Nano ; 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36622022

RESUMO

In this work, a biomimetic nanozyme catalyst with rapid and efficient self-bacteria-killing and wound-healing performances was synthesized. Through an in situ reduction reaction, a PCN-222 metal organic framework (MOF) was doped with bismuth nanoparticles (Bi NPs) to form Bi-PCN-222, an interfacial Schottky heterojunction biomimetic nanozyme catalyst, which can kill 99.9% of Staphylococcus aureus (S. aureus). The underlying mechanism was that Bi NP doping can endow Bi-PCN-222 MOF with self-driven charge transfer through the Schottky interface and the capability of oxidase-like and peroxidase-like activity, because a large number of free electrons can be captured by surrounding oxygen species to produce radical oxygen species (ROS). Furthermore, once bacteria contact Bi-PCN-222 in a physiological environment, its appropriate redox potential can trigger electron transfer through the electron transport pathway in bacterial membranes and then the interior of the bacteria, which disturbs the bacterial respiration process and subsequent metabolism. Additionally, Bi-PCN-222 can also accelerate tissue regeneration by upregulating fibroblast proliferation and angiogenesis genes (bFGF, VEGF, and HIF-1α), thereby promoting wound healing. This biomimetic enzyme-catalyzed strategy will bring enlightenment to the design of self-bacterial agents for efficient disinfection and tissue reconstruction simultaneously.

14.
J Biomater Appl ; 37(7): 1300-1314, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36607821

RESUMO

Polymethyl methacrylate (PMMA) bone cement is now widely used in percutaneous vertebro plasty (PVP) and percutaneous kyphoplasty (PKP). However, studies showed that the radiopacifiers (zirconia, barium sulfate, etc.) added to PMMA will have a negative impact on its use, e.g. barium sulfate will weaken the mechanical properties of bone cement and lead to bone absorption and aseptic loosening. Iodine is an element existing in the human body and has good imaging performance. Iodine contrast agent has been used in clinic for many years and has abundant clinical data. Therefore, using iodine instead of barium sulfate may be a promising choice. In this paper, the effect of different content of diatrizoate sodium (DTA, C11H8I3N2NaO4) on the properties of PMMA was studied and compared with the traditional PMMA bone cement containing 30 wt% barium sulfate. The mechanical properties, setting properties, radiopacity, and biocompatibility of bone cement were evaluated. The compressive strength of PMMA bone cement with 20 wt% DTA can reach 76.38 MPa. DTA released from bone cement up to 14 days accounted for only 2.3% of its dosage. The water contact angle was 62.3°. The contrast of bone cement on X-ray film was comparable to that of bone cement containing 30 wt% barium. The hemolysis rate was lower than 4%, and there was no obvious hemolysis. PMMA with 20 wt% DTA can maintain the relative growth rate of MC3T3-E1 and L929 cells above 80%. The results show that adding 20 wt% DTA into PMMA can obtain good radiopacity while maintaining its mechanical properties, setting properties, and biocompatibility. DTA can be used as a promising candidate material for PMMA bone cement radiopacifier.


Assuntos
Iodo , Polimetil Metacrilato , Humanos , Cimentos Ósseos , Sulfato de Bário , Diatrizoato , Hemólise , Teste de Materiais
15.
Adv Fiber Mater ; 5(2): 484-496, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36466134

RESUMO

In this study, an antibacterial nanofiber membrane [polyvinylidene fluoride/Bi4Ti3O12/Ti3C2T x (PVDF/BTO/Ti3C2T x )] is fabricated using an electrostatic spinning process, in which the self-assembled BTO/Ti3C2T x heterojunction is incorporated into the PVDF matrix. Benefiting from the internal electric field induced by the spontaneously ferroelectric polarization of BTO, the photoexcited electrons and holes are driven to move in the opposite direction inside BTO, and the electrons are transferred to Ti3C2T x across the Schottky interface. Thus, directed charge separation and transfer are realized through the cooperation of the two components. The recombination of electron-hole pairs is maximumly inhibited, which notably improves the yield of reactive oxygen species by enhancing photocatalytic activity. Furthermore, the nanofiber membrane with an optimal doping ratio exhibits outstanding visible light absorption and photothermal conversion performance. Ultimately, photothermal effect and ferroelectric polarization enhanced photocatalysis endow the nanofiber membrane with the ability to kill 99.61% ± 0.28% Staphylococcus aureus and 99.71% ± 0.16% Escherichia coli under 20 min of light irradiation. This study brings new insights into the design of intelligent antibacterial textiles through a ferroelectric polarization strategy. Supplementary Information: The online version contains supplementary material available at 10.1007/s42765-022-00234-8.

16.
Small ; 18(41): e2204028, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36089666

RESUMO

It is difficult to effectively treat bacterial osteomyelitis using photothermal therapy or photodynamic therapy due to poor penetration of light. Here, a microwave (MW)-excited magnetic composite of molybdenum disulfide (MoS2 ) / iron oxide (Fe3 O4 ) is reported for the treatment of bacteria-infected osteomyelitis. In in vitro and in vivo experiments, MoS2 /Fe3 O4 is shown to effectively eradicate bacteria-infected mouse tibia osteomyelitis, due to MW thermal enhancement and reactive oxygen species (ROS) (1 O2 and ·O2 - ) production under MW radiation. In addition, the mechanism of MW heat generation is proposed by MW network vector analysis. By the density functional theory and finite element method, the ROS generation mechanism is proposed. The synergy or conductive network between dielectric MoS2 and magnetic Fe3 O4 can reach both enhancement of the dielectric and magnetic attenuation capability. In addition, abundant interfaces are generated to enhance the attenuation of electromagnetic waves by MoS2 and Fe3 O4, introducing multiple reflections and interfacial polarization. Therefore, MoS2 /Fe3 O4 has excellent MW absorption ability based on the synergy or conductive network between MoS2 and magnetic Fe3 O4 as well as multiple dielectric reflections and interfacial polarization.


Assuntos
Osteomielite , Infecções Estafilocócicas , Animais , Camundongos , Micro-Ondas , Molibdênio , Osteomielite/terapia , Espécies Reativas de Oxigênio , Infecções Estafilocócicas/terapia , Staphylococcus aureus
17.
Rare Metals ; 41(12): 4138-4148, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36157375

RESUMO

The daily life of people in the intelligent age is inseparable from electronic device, and a number of bacteria on touch screens are increasingly threatening the health of users. Herein, a photocatalytic TiO2/Ag thin film was synthesized on a glass by atomic layer deposition and subsequent in situ reduction. Ultraviolet-visible (UV-Vis) spectra showed that this film can harvest the simulated solar light more efficiently than that of pristine TiO2. The antibacterial tests in vitro showed that the antibacterial efficiency of the TiO2/Ag film against S. aureus and E. coli was 98.2% and 98.6%, under visible light irradiation for 5 min. The underlying mechanism was that the in-situ reduction of Ag on the surface of TiO2 reduced the bandgap of TiO2 from 3.44 to 2.61 eV due to the formation of Schottky heterojunction at the interface between TiO2 and Ag. Thus, TiO2/Ag can generate more reactive oxygen species for bacterial inactivation on the surface of electronic screens. More importantly, the TiO2/Ag film had great biocompatibility with/without light irradiation. The platform not only provides a more convenient choice for the traditional antibacterial mode but also has limitless possibilities for application in the field of billions of touch screens.

18.
ACS Nano ; 16(9): 14860-14873, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36094899

RESUMO

Owing to its flexibility and high treatment efficiency, phototherapy is rapidly emerging for treating bacteria-induced diseases, but how to improve the sensitivity of bacteria to reactive oxygen species (ROS) and heat simultaneously to kill bacteria under mild conditions is still a challenge. Herein, we designed a NIR light catalyst (Bi2S3-S-nitrosothiol-acetylcholine (BSNA)) by transforming •O2- into peroxynitrite in situ, which can enhance the bacterial sensibility to ROS and heat and kill bacteria under a mild temperature. The transformed peroxynitrite in situ possessed a stronger ability to penetrate cell membranes and antioxidant capacity. The BSNA nanoparticles (NPs) inhibited the bacterial glucose metabolic process through down-regulated xerC/xerD expression and disrupted the HSP70/HSP90 secondary structure through nitrifying TYR179. Additionally, the synergistic effect of the designed BSNA and clinical antibiotics increased the antibacterial activity. In the case of tetracycline-class antibiotics, BSNA NPs induced phenolic hydroxyl group structure changes and inhibited the interaction between tetracycline and targeted t-RNA recombinant protein. Besides, BSNA stimulated production of more CD8+ T cells and reduced common complications in peritonitis, which provided immunotherapy activity. The targeted and anti-infective effect of BSNA suggested that we propose a nanotherapeutic strategy to achieve more efficient synergistic therapy under mild temperatures.


Assuntos
Infecções Bacterianas , Nanopartículas , S-Nitrosotióis , Acetilcolina , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antioxidantes , Bactérias/metabolismo , Infecções Bacterianas/tratamento farmacológico , Bismuto , Linfócitos T CD8-Positivos , Glucose , Humanos , Imunoterapia , Nanopartículas/química , Ácido Peroxinitroso , Fototerapia , RNA , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes , Sulfetos/química , Sulfetos/farmacologia , Sulfetos/uso terapêutico , Tetraciclinas
19.
J Colloid Interface Sci ; 625: 606-613, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35764042

RESUMO

Efficient catalysts with low costs are very important for hydrogen production. In this work, a nanoporous CoMoP (np-CoMoP) bimetallic phosphide catalyst with a self-supporting structure was prepared by the electrochemical dealloying method. The introduction of Mo tuned the electronic structures around Co and P, optimized the desorption of the H atom, and improved the catalytic activity of cobalt phosphide. The prepared nanoporous Co65Mo15P20 (np-Co65Mo15P20) structures promoted electron transfer and provided more active sites, exhibiting superior hydrogen evolution reaction (HER) performance with the overpotential of 40.8 mV at 10 mA cm-2 and Tafel slope of 46.2 mV dec-1 in alkaline solution. Also, the catalysts exhibited good long-term stability.

20.
Nat Commun ; 13(1): 2461, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513402

RESUMO

Owing to the existence of the outer membrane barrier, most antibacterial agents cannot penetrate Gram-negative bacteria and are ineffective. Here, we report a general method for narrow-spectrum antibacterial Garcinia nanoparticles that can only be effective to kill Gram-positive bacteria, to effectively eliminate Gram-negative bacteria by creating transient nanopores in bacterial outer membrane to induce drug entry under microwaves assistance. In vitro, under 15 min of microwaves irradiation, the antibacterial efficiency of Garcinia nanoparticles against Escherichia coli can be enhanced from 6.73% to 99.48%. In vivo, MV-assisted GNs can effectively cure mice with bacterial pneumonia. The combination of molecular dynamics simulation and experimental results reveal that the robust anti-E. coli effectiveness of Garcinia nanoparticles is attributed to the synergy of Garcinia nanoparticles and microwaves. This work presents a strategy for effectively treating both Gram-negative and Gram-positive bacteria co-infected pneumonia using herbal medicine nanoparticles with MV assistance as an exogenous antibacterial auxiliary.


Assuntos
Garcinia , Nanopartículas , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Escherichia coli , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Camundongos , Testes de Sensibilidade Microbiana , Micro-Ondas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...